Magnetic field formulae

Magnetic field due to an infinite, straight current filament	$B = \frac{\mu_0 i}{2 \pi d}$	
On-axis field due to N current loops and radius r	$B = \frac{\mu_0 i}{2 r} N$	
Axial field of a finite, straight, thin shell solenoid of length L and N loops.	$B = \frac{\mu_0 i}{L} N$	
Force for a moving charge inside a magnetic field	$\vec{F} = q \ \vec{v} \times \vec{B}$	
Force for a straight current filament inside a magnetic field	$\vec{F} = i \cdot \vec{L} \times \vec{B}$	
Magnetic force between two straight current filaments	$F = \frac{\mu_0}{2 \pi d} i_1 i_2 L$	
Torque for a coil with N loops	$M = i S B N \sin \alpha$	
Flux through a loop	$\phi = B S \cos \alpha$	
Orbit of a moving charge inside a magnetic field. Velocity is perpendicular to magnetic field.	$F_{MAG} = F_{CEN} \rightarrow q v B = m \frac{v^2}{r}$	
	$r = \frac{mv}{qB}, T = \frac{2\pi r}{v}, f = \frac{1}{T}$	

Symbol	Magnitude		S.I. unit
В	Magnetic field	(Tesla)	$\mathbf{T} = \mathbf{N} \cdot \mathbf{A}^{-1} \cdot \mathbf{m}^{-1}$
q	Charge (C	oulomb)	$C = A \cdot s$
i	Current intensity (A	mpere)	$\mathbf{A} = \mathbf{C} \cdot \mathbf{s}^{-1}$
μ_0	Permeability of vacuum = 4	$1 \cdot \pi \cdot 10^{-7}$	$T \cdot m \cdot A^{-1}$
N	Number of loops in the coil		
r	Loop radius		m
d	Distance		m
F	Force		Ν
v	Velocity		$\mathbf{m} \cdot \mathbf{s}^{-1}$
L	Length		m
S	Section		m^2
M	Torque		N·m
α	Angle between magnetic field vector and velocity	vector	rad or degrees
т	Mass		kg
Т	Period		S
f	Frequency		Hz or s^{-1}
ϕ	Magnetic flux (Weber)	$Wb = T \cdot m^2$

www.vaxasoftware.com