

Problems of Matrix calculations

1) Calculate a) $A^t + B$, b) $5A - B^t$.

Where
$$A = \begin{pmatrix} 7 & 3 & 7 \\ -6 & 8 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & -7 \\ 2 & 7 \\ -2 & 4 \end{pmatrix}$

2) Find out a) A - B, b) 4A + B, c) $A + B^{t}$.

Where
$$A = \begin{pmatrix} -6 & -7 & 9 \\ 3 & -6 & 6 \\ 2 & -5 & 6 \end{pmatrix}$$
 and $B = \begin{pmatrix} 7 & 7 & 8 \\ 3 & -4 & 5 \\ 7 & -6 & -3 \end{pmatrix}$

3) Calculate a) $A \cdot B$, b) A^2 , c) $A \cdot B \cdot C$.

Where
$$A = \begin{bmatrix} 6 & 5 \\ 3 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & -4 \\ -5 & 7 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & -8 \\ 2 & 4 \end{bmatrix}$

4) Calculate a) A·B, b) B·A.

Where
$$A = \begin{pmatrix} -8 & 7 \\ -5 & -2 \\ -7 & 9 \end{pmatrix}$$
 and $B = \begin{pmatrix} -4 & 3 & 0 \\ 3 & -5 & -5 \end{pmatrix}$

5) Solve for *X* matrix the following matricial equations:

a)
$$ABX = C$$
.

a)
$$A B X = C$$
, **b)** $X A^{-1} + B = C$, **c)** $8X^{t} + B = C$

c)
$$8X^{t} + B = C$$

6) Solve for *X* matrix the following matricial equations:

a)
$$AX + 6X - B$$

a)
$$AX + 6X = B$$
, **b)** $AX^{-1} + B = C$, **c)** $X^{t}A + B = C$

c)
$$X^t A + B - C$$

7) Solve the matricial equation $A \cdot X - B = C$.

Where
$$A = \begin{pmatrix} 5 & -5 \\ 1 & -8 \end{pmatrix}$$
, $B = \begin{pmatrix} 7 & 7 \\ -6 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 13 & 8 \\ -25 & -34 \end{pmatrix}$

8) Solve the matricial equation $A \cdot X + B = C$.

Where
$$A = \begin{pmatrix} 3 & 0 \\ 6 & 8 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & -9 & -7 \\ 0 & -9 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 26 & -3 & 2 \\ 90 & 27 & -12 \end{pmatrix}$

9) Solve the following system of matricial equations:

$$2X + 2Y = A
4X - 4Y = B$$
, where $A = \begin{bmatrix} 18 & 14 \\ -2 & 32 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & -20 \\ -52 & 0 \end{bmatrix}$

Problems of Matrix calculations

Answers:

1) **a)**
$$\begin{bmatrix} 9 & -13 \\ 5 & 15 \\ 5 & 5 \end{bmatrix}$$
, **b)** $\begin{bmatrix} 33 & 13 & 37 \\ -23 & 33 & 1 \end{bmatrix}$

2) **a)**
$$\begin{pmatrix} -13 & -14 & 1 \\ 0 & -2 & 1 \\ -5 & 1 & 9 \end{pmatrix}$$
, **b)** $\begin{pmatrix} -17 & -21 & 44 \\ 15 & -28 & 29 \\ 15 & -26 & 21 \end{pmatrix}$, **c)** $\begin{pmatrix} 1 & -4 & 16 \\ 10 & -10 & 0 \\ 10 & 0 & 3 \end{pmatrix}$

3) **a)**
$$\begin{pmatrix} -31 & 11 \\ -3 & -12 \end{pmatrix}$$
, **b)** $\begin{pmatrix} 51 & 30 \\ 18 & 15 \end{pmatrix}$, **c)** $\begin{pmatrix} 22 & 292 \\ -24 & -24 \end{pmatrix}$

4) **a)**
$$\begin{bmatrix} 53 & -59 & -35 \\ 14 & -5 & 10 \\ 55 & -66 & -45 \end{bmatrix}$$
, **b)**
$$\begin{bmatrix} 17 & -34 \\ 36 & -14 \end{bmatrix}$$

5) **a)**
$$X = (A B)^{-1} C$$
, **b)** $X = (C - B) A$, **c)** $X = (C - B)^{t} / 8$

6) a)
$$X = (A + 6I)^{-1} B$$
, **b)** $X = (C - B)^{-1} A$, **c)** $X = [(C - B) A^{-1}]^{t}$

$$7) X = \left(\begin{array}{cc} 9 & 8 \\ 5 & 5 \end{array} \right)$$

$$X = \left(\begin{array}{ccc} 7 & 2 & 3 \\ 6 & 3 & -4 \end{array} \right)$$

$$Y = \begin{pmatrix} 4 & 1 \\ -7 & 8 \end{pmatrix} \text{ and } Y = \begin{pmatrix} 5 & 6 \\ 6 & 8 \end{pmatrix}$$