

Problems of Solubility equilibria

- 1) The solubility product constant of copper(I) sulfide (Cu_2S) is 1.600×10⁻⁴⁷. Find out:
 - a) Molar solubility of Cu₂S in pure water.
 - **b)** Molar concentration of Cu^{2+} and S^{2-} in the saturated solution.
- 2) Find out the volume of aqueous saturated solution of magnesium hydroxide (Mg(OH)₂) that contains 2 g of this compound if its solubility product constant is $k_{sp} = 1.200 \times 10^{-11}$.
- 3) Calculate the mass of zinc hydroxide $(Zn(OH)_2)$ contained in 1000 mL of an aqueous saturated solution of this compound if its solubility product constant is $k_{sp} = 5.850 \times 10^{-17}$.
- 4) At 25 °C the molar solubility in pure water of silver sulfide (Ag₂S) is 9.873×10^{-18} mol/L. Determine:
 - a) Solubility product constant.
 - **b)** Molar concentration of Ag^+ and S^{2-} in the saturated solution.
- 5) In an aqueous saturated solution of copper(I) sulfide (Cu_2S) the molar concentration of S^{2-} is
- 1.651×10⁻¹⁶ mol/L. Find out:
 - a) Molar solubility and solubility product constant of Cu₂S in pure water.
 - **b)** Molar concentration of Cu²⁺ in the saturated solution.
- 6) The solubility product constant of magnesium hydroxide (Mg(OH)₂) is 1.680×10^{-11} . Find out:
 - a) Molar solubility of Mg(OH)₂ in pure water.
 - **b**) Molar concentration of Mg²⁺ in the saturated solution.
 - c) pH of the saturated solution.
- 7) A flask contains 1550 mL of an aqueous saturated solution of lead(II) chloride (PbCl₂). The mass of solute is 6.741 g. Calculate:
 - a) Molar solubility of PbCl₂ in pure water.
 - **b**) Solubility product constant.
- 8) The solubility product constant of silver chromate (Ag_2CrO_4) is 2.850×10^{-12} . Find out:
 - a) Molar solubility of Ag₂CrO₄ in pure water.
 - **b**) Molar concentration of Ag^+ and CrO_4^{2-} in the saturated solution.
- 9) The solubility product constant of manganese(II) hydroxide (Mn(OH)₂) is 1.200×10^{-13} . Determine:
 - a) Molar solubility of Mn(OH)₂ in pure water if we ignore initial hydroxide concentration from water.
 - **b)** Molar solubility of $Mn(OH)_2$ in an aqueous solution of NaOH where pH = 11.88.

Problems of Solubility equilibria

- 10) The solubility product constant of silver chloride (AgCl) is 1.190×10^{-10} . Determine:
 - a) Molar solubility of AgCl in pure water.
 - **b)** Molar solubility of AgCl in a 2.97×10⁻³ mol/L solution of sodium chloride (NaCl).
- 11) At 25 °C the molar solubility in pure water of calcium fluoride (CaF₂) is 2.169×10⁻⁴ mol/L. Determine:
 - a) Solubility product constant.
 - **b)** Molar solubility of CaF₂ in a 0.0314 mol/L solution of calcium nitrate (Ca(NO₃)₂).
- 12) In a saturated aqueous solution of silver chromate (Ag_2CrO_4) the molar concentration of Ag^+ is 1.560×10^{-4} mol/L. Find out:
 - a) Molar solubility and solubility product constant of Ag₂CrO₄ in pure water.
 - **b)** Molar solubility of Ag₂CrO₄ in a 5.46×10⁻³ mol/L solution of sodium chromate (Na₂CrO₄).
- 13) The solubility product constant of zinc hydroxide $(Zn(OH)_2)$ is 4.950×10^{-17} . Determine:
 - a) Molar solubility of Zn(OH)₂ in pure water if we ignore initial hydroxide concentration from water.
 - **b)** Molar solubility of $Zn(OH)_2$ in an aqueous solution of NaOH where pH = 10.53.

Answers:

- 1) **a)** $1.587 \times 10^{-16} \text{ mol/L}$, **b)** $[\text{Cu}^{2+}] = 3.175 \times 10^{-16} \text{ mol/L}$, $[\text{S}^{2-}] = 1.587 \times 10^{-16} \text{ mol/L}$.
- **2**) 237.7 L.
- **3**) 0.243 mg.
- **4**) **a)** 3.850×10^{-51} , **b)** $[Ag^+] = 1.975 \times 10^{-17} \text{ mol/L}$, $[S^{2-}] = 9.873 \times 10^{-18} \text{ mol/L}$.
- **5**) **a)** 1.651×10^{-16} mol/L, 1.800×10^{-47} , **b)** $[Cu^{2+}] = 3.302 \times 10^{-16}$ mol/L.
- **6**) **a**) $1.613 \times 10^{-4} \text{ mol/L}$, **b**) $[Mg^{2+}] = 1.613 \times 10^{-4} \text{ mol/L}$, **c**) 10.51.
- 7) **a)** 0.01564 mol/L, **b)** 1.530×10^{-5} .
- 8) **a)** $8.932 \times 10^{-5} \text{ mol/L}$, **b)** $[Ag^+] = 1.786 \times 10^{-4} \text{ mol/L}$, $[CrO_4^{2-}] = 8.932 \times 10^{-5} \text{ mol/L}$.
- **9**) **a)** 3.107×10^{-5} mol/L, **b)** 2.122×10^{-9} mol/L.
- **10**) **a)** 1.091×10^{-5} mol/L, **b)** 4.011×10^{-8} mol/L.
- **11**) **a)** 4.080×10^{-11} , **b)** 1.800×10^{-5} mol/L.
- **12) a)** 7.802×10^{-5} mol/L, 1.900×10^{-12} , **b)** 9.318×10^{-6} mol/L.
- **13**) **a)** 2.313×10^{-6} mol/L, **b)** 4.401×10^{-10} mol/L.